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Application of Weight Function Technique for Stress Intensity
Factor and Failure Assessment Diagram

with a Realistic Stress Profile

Kwang-I1 Ho*
(Received October 9, /995)

An engineering approach to calculate the stress intensity factors of a semi-elliptical crack is

presented. A 2-dimensional solution is derived through weight function, by reflecting on the

physical character of cracks. Flaw assessments were performed by the application of DPFAD

approach with the K, calculation for the realistic stress profile through weight function tech­

niq ue. The assessment points in DPFAD curve resulted in the increased safety margins. These

results show the sufficient conservatism in the application of DPFAD with the weight function

technique for flaw assessments, when ductile failure is expected.
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1. Introduction

When assessing the structural integrity of

power plant components, it is required to employ

the failure assessment approach which is recom­

mended in ASME Sec. Xl. The background of

ASME flaw analysis is the LEFM which is

mainly applicable to the fracture phenomena of

brittle material. In LEFM instability conditions

were decided by Applied Stress Intensity Factor,

K, and Critical Stress Intensity Factor, Kn or

KID' which were affected by crack length and

applied stress. But pressure vessels of power plant

have been operating above the transition tempera­

ture. Owing to the too much conservatism of

LEFM, recently EPFM (Elastic Plastic Fracture

Mechanics) approach is the new trend for the

calculation of realistic safety factor. Depending

on whether a brittle or ductile fracture behavior is

expected under service conditions, stress intensity

factor or J-integral is most widely used for failure

assessments.

A representative engineering method for the
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EPFM is the DPFAD (Deformation Plasticity

Failure Assessment Diagram)(Harison, et. al.,

1976; Bloom, et. al., 1982), which was developed

by EPRI and Babcock & Wilcox, based on the

CEGB R-6 failure assessment diagram (Bloom,

1983). Bloom (1985) described the application for

the longitudinal continuous flaw and semi­

elliptical flaw which was classified as the ASME

Sec. III, Appendix G-type (1989).

In this work, the mode I analysis problem of a

semi-elliptical crack is treated and the stress inten­

sity factors are calculated by using weight func­

tion and this values are applied to the Failure

Assessment Diagram to show the more realistic

analysis and good safety margin.

2. Analytical Study

2.1 Theoretical approach

2.1.1 Stress intensity factor through weight
function

Labben et. aJ. (1976) introduced weight func­

tions to calculate stress intensity factor. Bueckner

(1970) and Rice (1972) demonstrated that particu­

lar function is a property of a cracked geometry.
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The weight function may be employed in the

derivation of stress intensity factor solutions.
The weight function proposed by Bueckner

(1970) for the geometry as shown in Fig. I is:

where

N 1=0.6147, N2=0.2502

01=17.1844, 02=3.2899
P1=8.7822, H=70.0444

(2)

where 6(X) is the distributed stress in the uncrack­

ed structures.
In order to obtain the exact solution for the

semi-el1iptical crack (Fig. 2), 3-dimensional anal­

ysis is required. But, simplification could be
performed through Eq. (2) with some geometrical

Then, K1(a) could be obtained from the follow­

ing equation. That is,

(I)

are given as:

[I +ml( a~ x)+ m{a~~-rJ

where 111) and m« are functions of the ratio of

crack depth to strip width (a/ w). These values
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Fig. 1 Continous surface crack in an infinite strip
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Fig. 2 Semi-elliptical surface crack In an infinite
strip
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value depends on the aspect ratio (12/;1). There­
fore, in this study the line integral was classified
as one of the constraint factors. Then the modified

stress intensity factor is given as:

(4)

[ ( a -- x ) (a-x)zJI+ml -a- +mz -a-

(If/2[ ('2 Z) J'!(/) = )0 I - /I ~~a sin"B zdB

Ri~_--t

---t... x

a

Fig. 3 Continous surface crack in a cylinder

constraint factors such as a semi-elliptical crack

shape and a finite crack length.
The weight function is related to the crack

shape and crack tip displacement. Crack tip
displacement in the cylindrical structure would be

more restricted than in the plate. The displace­
ment at an arbitrary x from inner surface (Fig. 3)

is a function of the ratio of distance from cylinder

center to the crack tip (Rabbens, et. al., 1976).
According to Labbens and Heliot (1976), the

modified weight function for cylindrical struc­

tures could be given as :

2) Consideration of finite crack length
According to Eq. (I) the value of weight func­

tion at the free surface is I + m, + mz and becomes
infinite at the crack tip. Furthermore the value of
weight function for semi-elliptical cracks with
finite crack is much less than that for continuous

cracks at any given points between the surface
and the crack tip. And, the increasing rate of

weight function for semi-elliptical crack to the
continuous crack is asymptotically limited. So,

with the consideration of best fitting of slower
increasing rate for semi-elliptical cracks and

assumption that the sinusoidal line integral is the

most appropriate correction factor in this case, m,
and ms suggested by Bueckner (1970) is modified
as follows:

m, = Nt+ Ol(c'(/)2 )(~!r
+Pl( C~z)( ~r

mz=Nz+ 02( C~)( ~.r

+ P2( C~2 )(~J

1) Consideration of semi-elliptical crack
shape

When reviewing the stress intensity factor for
semi-elliptical cracked structure, the line integral
(/) has been designated a shape factor because its

( R i+ X )( I )tM(x, a)= Ri+a 27r(a-x) .

[I+m l ( a~x-)+mz( a~xn

where R i is an inner radius of cylinder.

(3)

where C is a constant.
If a/;1 is zero, the constant terms represent the

values for continuous crack, and if a/;1 is one,

these constants represent the values for the semi­
circular crack.

The stress intensity factor modified by includ­
ing these geometrical constraint factor is given as :

I (a
KI(a)=q;)o a(x)M(x, aidx

I

Mb:, a)=(~:t~)(2Jr({1-xTr·
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The arbitrary distributed stress can be expressed

by a series of polynomial. However this stress

distribution can be fitted by a third degree of

polynomial, i. e.,

(J(x)=Ao+A1X+A2X2+A3X3 (6)

With inserting the above stress distribution, Eq.

(5) becomes:

K/(a)= ~la[(~',~~)(Ao+A1x+A2x2

+ih(3)(_.~1.~) ! (I +m1(a-x)
2Jr(a-x) a

(9)

(12)

( 13)

I I
jef{i-:Pf = 7?;

_ (je(aeff' PHFt:«, P, n))----- rC{i;J5)--

=/(-~-)
= /(Sr)

E (J (6 )n---+a-
Eo a; (Jo

power law, such as

Simple expressions for the I-integral of the

cracked structure can be written as

I=r(Oeff' PH jP(a, P, n) (10)

where r is the elastic contribution based on

Irwin's effective crack depth (aeff) and jP is the

deformation plasticity solution. From the hand­

book (Tada, et. al., 1973), l" is founded and jP is

provided by EPRI NP-1931 (Rice, 1972) and the

stress and strain parameter «(Ja' Eo) in Eq. (9) can

be chosen as the engineering yield strength and

yield strain, respectively. a, n are determined by

using Eq. (9) and experimental data.

Once Eq. (10) is determined, the deformation

plasticity failure assessment curves are defined by

dividing the total I -integral of the cracked struc­

ture by the elastic I -integral of the structure given

by

where K is the linear elastic fracture mechanics

stress intensity factor. Eq. (10) becomes

In Eq. (12) K, represented the ratio of stress

intensity factor to fracture toughness and S; = (J /

(Jp is the applied stress/plastic collapse stress

ratio. To use the deformation plasticity failure

assessment diagram, assessment points are then

plotted on the resulting diagram. The coordinates

of these assessment points can be calculated using

(5)

(8)

(7)

[I + m 1(a~X)+ mz( a~x YJ
m1=N1+ 01( C~2)( ~y

+ P1( C~2)( ~~r

m2=N2+ OZ( C~z)( ~y

+ P2(C~2 )(-~r

+ mz(!L~ xnJdx

K/(a)= ~h~T)~[Ao(R,f01+a/02)
+ A1(R,f11+2a/12)0
+ AAR,2/Z1+60/22)a

2

+ A3(R,6j,1 +24ahz)a3]

2 2
/01=2+ 3m1+Sm2

444
/02=3+T5m1 +15m2

/11= /02
8 8 8

/12=T5+4jm1+3T.smz

/21= /lZ
16 16 16

/22= 105 + 945 m, + 3465 rn«

/31 = /22
32 32 32

/3z=945+T039S m l + 45045 Jn2

where

where K is the stress intensity factor for the

structure and K/c is the fracture toughness of the

material. (J is the applied stress on the structure

2.1.2 Plasticity deformation failure assess­
ment diagram

If a material's behavior can be represented by

deformation plasticity theory and its true stress­

true strain relationship by a Ramberg-Osgood

S' =-.2...
r (Jp (14)
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For stable crack growth (ductile tearing), both K~

and S~ must be redefined as

where [", In and (J (ao +Lla) are functions of the
amount of slow stable crack growth. In is the

experimentally measured J-resistance curve plot­

ted as a function of Aa. r is calculated as before
from the elastic stress intensity factor for the

current crack length (ao +da).

(18)

3.1 Stress intensity factor problems

where FI, }"'z, F3, F. are magnification factors.
Through the use of Eq. (6) to (8), magnification

factors for the present method are derived as :

3. Application Examples

3.1.1 Comparison with other methods
In order to judge the analytically developed

expression for the K versus a/A relationship, the
present results were compared to those calculated
by Labben et. al. (1976) and pc-CRACK (1989).
The parameter used for the comparison is magni­

fication factor.
Labben et. al. (1976) expressed the stress inten­

sity factors as follows:

KI=W[AoFI+ 2: AIFz

a
Z

4a
3

]+2A zF3+ 37"( A 3F.

(17)

(15)

(16)

and (Jp is the plastic collapse stress. For a particu­
lar stress level and flaw size, the coordinates (S~

K~) can be calculated and if the point lies on or
outside of the failure assessment curve, crack
growth will initiate. Points inside the curve indi­
cate that the system or structure is safe from the

crack initiation. An assessment point is designat­

ed by primed symbol, while the failure assessment
curve is represented in terms of unprimed S, and

K r ·

Furthermore, Eqs. (13) and (14) can be general-

ized to include crack initiation

Axial Crack (a/w=O.25)
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Fig. 4 Magnification factors vs, aspect ration

0.8



110 Kwang-Il Ho

Axial Crack(w/Ri=O.I, a/A =0)
5-r-----------------------------,
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Present study
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Fig. 5 Magnification factors for continous surface crack in a cylinder

3 I
F.= ;g[R,6f31+a24f3z] R;+a

Figure 4 shows the magnification factors with

the variation of crack aspect ratio (a/,1) for a/ w
=0.25. Magnification factors decrease as the

crack shape changed from continuous to semi­
elliptic. When aspect ratio is above 1.0, magnifica­

tion factors exhibited almost constant values. The
relation between magnification factors and frac­

tional crack depth (a/ w) is shown in Fig. 5,
including the results of Labbens and pc-CRACK,

for the continuous surface crack in cylinder. In
Fig. 5, magnification factors calculated by using

Eq. (18) are relatively consistent and in good
agreement with those from Labbens et. al. (1976)

and pc-CRACK (1989).
There are some discrepancies among these

values, when a/ w is above 0.5. However the use
of present method seems reasonable in practical

application, since the a/ w ratio for real cracks is
much smaller than 0.5. It should be noted that
constant terms, PI and p z, suggested by Labbens
et. al. (1976) were neglected in order to minimize
the data deviation and for the best fitting of m,
and m» C is I. Then, m, and m« were represent­
ed as a second order polynomial terms.

3.1.2 Sample problems
The example is typical of nuclear pressure

vessel (Outer Radius: R= 100 in. (25.4cm), w/R
=0.1). Two stress distributions are chosen, which
were used in Kim and Sohn (1989), i. e..

(}1(X) =40- 8.9l2x +0.974xz

-0.0382x3ksi

o"z<x)=40-17.824x+ 1.946xz

~0.0765x3 ksi

(I) Continuous surface crack in cylinder (a/ w

=0.25, a/,1=0)
Stress intensity factors obtained in this study

were compared to the 'pc-CRACK' (1989), as

tabulated in Table I.
The value of stress intensity factor obtained

from the present study is obviously closer to FEM
values than that of other calculation methods.

(2) Semi-elliptical surface crack in cylinder
Actual cracks in structural elements are often

approximated by semi-elliptical cracks. Therefore
comparison is extended to ASME-II1 APP.-G

type cracks (a/,1=1/6, a/w=0.25). The results
are shown in Table 2.

The values of the present study is also definitely
less conservative than those of other calculation
methods (Kim et. aI., 1989) and closer to the



Application of Weight Function Technique for Stress Intensity Factor and Failure Assessment-»- 111

Table 1 Stress intensity factors for continuous sur­

face crack

Calculation method

Stress intensity factor
(ksi- in.!")

(19)

where IN is in in-lb Zin- units and ,da is measured
'in inches.

Table 2 Stress intensity factors for ASME-III APP.

G-type crack

Stress intensity factor
(ksi- in.!")

(20)
O(x )=25 - 5.57x +0.6088x2

-0.02388x3, ksi

But, it was known that the stress inside the

vessel surface is the highest and is decreasing

along the thickness. Therefore the real stress

distribution along the thickness direction was

expressed as third order polynomial equation as

follow.

Pr0=-----
I

3.2.1 Realistic stress profile
When the pressure vessel was pressurized as P,

the average hoop stress is calculated as follow
174.8

134.3

84.3

81.6

76.4

Case of 62

Case of 62

174.8

154.6

129.6

123.5

115.8

Case of 6,

1-------------,-------

Case of 6,

Maximum stress

Linear envelope

ASME

Present study*

FEM by buchalet

Calculation method

3.2 Failure assessment diagram problems
Bloom (1985) used the K expression derived by

Newman and Raju (1980) for uniform stress

distribution.

To illustrate the use of the weight function in

the failure assessment diagram for a beltline crack

of al I =0.25, two crack configurations were

assumed:
(I) A continuous longitudinal inside surface

crack in a pressurized cylinder, al,,1=0.0;
(2) A semi-elliptical longitudinal inside sur­

face crack in a pressurized cylinder, al,,1=1/6.
For the comparison of these analyses, Bloom's

experimental and analytical data for the uniform

stress distribution case were adopted. For the

vessel of pressurized to 2.50 ksi (17.24 Mpa) at a

temperature of 392°F (R,=85 in. (216 em), 1=8.
5 in. (21.6 cmj), the !R resistance curve was given

by

Maximum stress

Linear envelope

ASME

Present study*

FEM by McGowan

FEM values.

134.7

116.9

94.8

83.7

75.8

134.7

99.0

55.0

52.3

46.9

The Ramberg-Osgood stress-strain constants

are: a=3.0, n=8.6, oys=85 ksi (586 MPa). Note

that a value of oa=O.OIO in. was used for he
using the !R expression given by Eq. (19).

3.3 Failure assessment diagram
To draw the failure assessment diagram curve

we used the Bloom's K, vs S, relation for IIR=

0.1, 1/=0.3 and expressed

_I ~( F(a e»)2
K';- a F(a)

+ 0.0026(1- al l)ah',Sr(n-l)

[
F(a) 1- a*I I J~:

IOIQ 1+0.1 a*IT
where

and

F(ae) [M, + Mz(ael t)Z+ M3(ael 1)4]
Ft a) [Ml + M2(al t)Z+ M3C27TPT

[ I. I 524-0.05/aJt]
[1.1524 - 0.05;an]

h;=h;(all,aIUIR, n)
= 6.9 for the semi-elliptical crack

= 7.38 for the continuous crack

by Bloom
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a*

Table 3 Numerical results for longitudinal continuous
crack

6a JR S; K' Safety factorr

in. in.lb/in" Bloom/present bloom/present

0.01 465 0.349 0.909/0.661 1.071/1.157

0.05 818 0.351 0.670/0.467 1.361/1.424

0.1 1045 0.354 0.630/0.421 1.49 /1.577

0.2 1334 0.360 0.480/0.386 1.59 /1.676

0.4 1702 0.373 0.560/0.367 1.63 /1.703

0.6 1962 0.387 0.566/0.367 1.60 /1.649

0.8 2173 0.402 0.582/0.373 1/55 /1.597

Table 4 Numerical results for longitudinal semi-elliptical
crack

6a JR S; K' Safety factorr

in. in.lb/in" Bloom/present bloom/present

0.01 465 0.349 0.611/0.449 1.60/2.103

0.05 818 0.351 0.465/0.340 2.03/2.504

0.1 1045 0.354 0.418/0.302 2.20/2.647

0.2 1334 0.360 0.380/0.270 2.33/2.761

0.4 1702 0.373 0.354/0.243 2.40/2.847

0.6 1962 0.387 0.346/0.229 2.39/2.838

0.8 2173 0.402 0.345/0.220 2.35/2.816

To include semi-elliptical cracks for the r
fully plastic expression, a was replaced by a*
which was suggested by Central Electricity Gener­

ating Board

aj[I-I(1 + [2/2t2)r
j[l- a/t(l + [2/2t 2)]

For the calculation of failure assessment point,
instead of Newman and Raju's K (1980), Eq. (20)

was used as K value. Through Eq. (13) to (17)

K;· and S~ were calculated and tabulated for the
comparison to the existing values.

Figures 6 and 7 illustrates our results and
Bloom's. The crack assessment in these examples
resulted in the more increased safety margin than

that of bloom's stress condition.
For the calculation of the safety factor, make a

straight line from the origin to the solid reference
curve. The straight line must pass through the

corresponding point which represents the K», Sr
values. The safety factor is defined as the ratio of

CYLINDER WITH CONTINUOUS FLAW
ALPHA =3, N =8.6

1.2-.-----------------,

0.8

~ 0.6 \,
0.4 \ii
0.2

0
0 0.2 0.4 0.6 0.8 1.2 1.4

Sr

/ 0 800m'sdata - Present study

Fig. 6 FAD for cylinder with continous flaw

CYLINDER WITH SEMI-ELLIPTICAL FLAW
ALPHA = 3. N =8.6

1.2 ...---------------~

0.8

0
~ 0.6

0.4

~0.2

0
0 0.2 0.4 0.6 0.8 1.2 1.4

Sr

I 0 Bloem's data • Present Study

Fig. 7 FAD for cylinder with semi-elliptical flaw

the reference radial distance with respect to the

corresponding radial distance from origin.
In Tables 1,2 and Figs. 6, 7 a=O.OI in. and O.

04 in. are for the JIC and maximum safety factor,
respectively. With the assumption of uniform
stress distribution safety factors for crack initia­

tion and maximum safety factor are 1.07 and 1.63,
respectively. For the case of realistic stress distri­

bution these safety factors form 1.60 and 2.10 to 2.

40 and 2.80.

4. Conclusions

The semi-elliptical crack problems are impor­
tant especially in the design and fracture analysis
of pressure vessels and castings. The complicated
3-dimensional analysis is required in order to

obtain the exact solution of stress intensity factors
for the semi-elliptical crack problems. However,
this complication could be overcome through

2-dimensional approach based on the continuous
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crack solution, by taking into account geometric

crack characters such as semi-elliptical crack

shape and finite crack length. It would be a great

advantage and was an objective herein to be able

to estimate the K versus a/tl relationship for a

semi-elliptical crack. Furthermore, the present

stress intensity factor solutions appear less conser­

vative than that of ASME-XI technique and close

to the FEM values.

Flaw assessments were performed by the appli­

cation of DPFAD (Failure Assessment Diagram)

approach with the K 1 calculation for the realistic

stress profile through weight function technique.

The remarkable advantage of the weight function

is the realistic calculation of the stress intensity

factor, which is used for the assessment points in

the DPFAD. These approach for failure assess­

ment could lead to prevent the unnecessarily early

shutdown of some nuclear power plants, which

might be assessed by conservative DPFAD analy­

sis with the assumption of uniform stress distribu­

tion.
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